Conforme se expuso previamente, la velocidad de hidratación y adquisición de resistencia de los diversos tipos de cemento portland depende básicamente de la composición química del clinker y de la finura de molienda. De esta manera, un cemento con alto contenido de silicato tricálcico (C3S) y elevada finura puede producir mayor resistencia a corto plazo, y tal es el caso del cemento tipo III de alta resistencia rápida. En el extremo opuesto, un cemento con alto contenido de silicato dicálcico (C2S) y finura moderada debe hacer más lenta la adquisición inicial de resistencia y consecuente generación de calor en el concreto, siendo este el caso del cemento tipo IV. Dentro de estos limites de comportamiento, en cuanto a la forma de adquirir resistencia, se ubican los otros tipos de cemento portland.
En cuanto a los cementos portland-puzolana, su adquisición inicial de resistencia suele ser un tanto lenta debido a que las puzolanas no aportan prácticamente resistencia a edad temprana. Por otra parte, resulta difícil predecir la evolución de resistencia de estos cementos porque hay varios factores que influyen y no siempre se conocen, como son el tipo de clinker con que se elaboran y la naturaleza, calidad y proporción de su componente puzolánico.
En cuanto a los cementos portland-puzolana, su adquisición inicial de resistencia suele ser un tanto lenta debido a que las puzolanas no aportan prácticamente resistencia a edad temprana. Por otra parte, resulta difícil predecir la evolución de resistencia de estos cementos porque hay varios factores que influyen y no siempre se conocen, como son el tipo de clinker con que se elaboran y la naturaleza, calidad y proporción de su componente puzolánico.
Generación de calor
En el curso de la reacción del cemento con el agua, o hidratación del cemento, se produce desprendimiento de calor porque se trata de una reacción de carácter exotérmico. Si el calor que se genera en el seno de la masa de concreto no se disipa con la misma rapidez con que se produce, queda un remanente que al acumularse incrementa la temperatura de la masa.
El calentamiento del concreto lo expande, de manera que posteriormente al enfriarse sufre una contracción, normalmente restringida, que genera esfuerzos de tensión capaces de agrietarlo. La posibilidad de que esto ocurra tiende a ser mayor a medida que aumenta la cantidad y velocidad de generación de calor y que disminuyen las facilidades para su pronta disipación. Es decir, el riesgo de agrietamiento de origen térmico se incrementa cuando se emplea un cemento de alta y rápida hidratación, como el tipo III, y las estructuras tienen gran espesor. Obviamente, la simultaneidad de ambos factores representa las condiciones pésimas en este aspecto.
Estabilidad volumétrica
Una característica indeseable del concreto hidráulico es su predisposición a manifestar cambios volumétricos, particularmente contracciones, que suelen causar agrietamientos en las estructuras. Para corregir este inconveniente, en casos que lo ameritan, se han desarrollado los cementos expansivos que se utilizan en los concretos de contracción compensada(22), pero que todavía no se producen localmente.
Estabilidad química
De tiempo atrás se reconoce que ningún arqueado es completamente inerte al permanecer en contacto con la pasta de cemento, debido a los diversos procesos y reacciones químicas que en distinto grado suelen producirse entre ambos(16). Algunas de estas reacciones son benéficas porque , contribuyen a la adhesión del agregado con la pasta, mejorando las j propiedades mecánicas del concreto, pero otras son detrimentales porque generan expansiones internas que causan daño y pueden terminar por destruir al concreto.
No hay comentarios:
Publicar un comentario